No
Yes
View More
View Less
Working...
Close
OK
Cancel
Confirm
System Message
Delete
Schedule
An unknown error has occurred and your request could not be completed. Please contact support.
Reserved
You've been added as a Walk-up
Personal Calendar
 
Conference Event
Meeting
Interests
There aren't any available sessions at this time.
Conflict Found
This session is already scheduled at another time. Would you like to...
Loading...
Please enter a maximum of {0} characters.
{0} remaining of {1} character maximum.
Please enter a maximum of {0} words.
{0} remaining of {1} word maximum.
must be 50 characters or less.
must be 40 characters or less.
Session Summary
We were unable to load the map image.
This has not yet been assigned to a map.
Search Catalog
Reply
Replies ()
Search
New Post
Microblog
Microblog Thread
Post Reply
Post
Your session timed out.
Meeting Summary

I'm interested in this
I'm no longer interested
 

ABD201 - Big Data Architectural Patterns and Best Practices on AWS In this session, we simplify big data processing as a data bus comprising various stages: collect, store, process, analyze, and visualize. Next, we discuss how to choose the right technology in each stage based on criteria such as data structure, query latency, cost, request rate, item size, data volume, durability, and so on. Finally, we provide reference architectures, design patterns, and best practices for assembling these technologies to solve your big data problems at the right cost. Breakout Session
ABD201-R - [REPEAT] Big Data Architectural Patterns and Best Practices on AWS In this session, we simplify big data processing as a data bus comprising various stages: collect, store, process, analyze, and visualize. Next, we discuss how to choose the right technology in each stage based on criteria such as data structure, query latency, cost, request rate, item size, data volume, durability, and so on. Finally, we provide reference architectures, design patterns, and best practices for assembling these technologies to solve your big data problems at the right cost. Breakout Session
ABD202 - Best Practices for Building Serverless Big Data Applications Serverless technologies let you build and scale applications and services rapidly without the need to provision or manage servers. In this session, we show you how to incorporate serverless concepts into your big data architectures. We explore the concepts behind and benefits of serverless architectures for big data, looking at design patterns to ingest, store, process, and visualize your data. Along the way, we explain when and how you can use serverless technologies to streamline data processing, minimize infrastructure management, and improve agility and robustness and share a reference architecture using a combination of cloud and open source technologies to solve your big data problems. Topics include: use cases and best practices for serverless big data applications; leveraging AWS technologies such as Amazon DynamoDB, Amazon S3, Amazon Kinesis, AWS Lambda, Amazon Athena, and Amazon EMR; and serverless ETL, event processing, ad hoc analysis, and real-time analytics. Breakout Session
ABD203 - Real-Time Streaming Applications on AWS: Use Cases and Patterns To win in the marketplace and provide differentiated customer experiences, businesses need to be able to use live data in real time to facilitate fast decision making. In this session, you learn common streaming data processing use cases and architectures. First, we give an overview of streaming data and AWS streaming data capabilities. Next, we look at a few customer examples and their real-time streaming applications. Finally, we walk through common architectures and design patterns of top streaming data use cases. Breakout Session
ABD203-R - [REPEAT] Real-Time Streaming Applications on AWS: Use Cases and Patterns To win in the marketplace and provide differentiated customer experiences, businesses need to be able to use live data in real time to facilitate fast decision making. In this session, you learn common streaming data processing use cases and architectures. First, we give an overview of streaming data and AWS streaming data capabilities. Next, we look at a few customer examples and their real-time streaming applications. Finally, we walk through common architectures and design patterns of top streaming data use cases.   Breakout Session
ABD205 - Taking a Page Out of Ivy Tech’s Book: Using Data for Student Success Data speaks. Discover how Ivy Tech, the nation's largest singly accredited community college, uses AWS to gather, analyze, and take action on student behavioral data for the betterment of over 3,100 students. This session outlines the process from inception to implementation across the state of Indiana and highlights how Ivy Tech's model can be applied to your own complex business problems. Breakout Session
ABD206 - Building Visualizations and Dashboards with Amazon QuickSight Just as a picture is worth a thousand words, a visual is worth a thousand data points.  A key aspect of our ability to gain insights from our data is to look for patterns, and these patterns are often not evident when we simply look at data in tables. The right visualization will help you gain a deeper understanding in a much quicker timeframe.  In this session, we will show you how to quickly and easily visualize your data using Amazon QuickSight.  We will show you how you can connect to data sources, generate custom metrics and calculations, create comprehensive business dashboards with various chart types, and setup filters and drill downs to slice and dice the data. Breakout Session
ABD207 - Leveraging AWS to Fight Financial Crime and Protect National Security Banks aren’t known to share data and collaborate with one another. But that is exactly what the Mid-Sized Bank Coalition of America (MBCA) is doing to fight digital financial crime—and protect national security. Using the AWS Cloud, the MBCA developed a shared data analytics utility that processes terabytes of non-competitive customer account, transaction, and government risk data. The intelligence produced from the data helps banks increase the efficiency of their operations, cut labor and operating costs, and reduce false positive volumes. The collective intelligence also allows greater enforcement of Anti-Money Laundering (AML) regulations by helping members detect internal risks—and identify the challenges to detecting these risks in the first place. This session demonstrates how the AWS Cloud supports the MBCA to deliver advanced data analytics, provide consistent operating models across financial institutions, reduce costs, and strengthen national security. Session sponsored by Accenture Breakout Session
ABD208 - Cox Automotive Empowered to Scale with Splunk Cloud & AWS and Explores New Innovation with Amazon Kinesis Firehose In this session, learn how Cox Automotive is using Splunk Cloud for real time visibility into its AWS and hybrid environments to achieve near instantaneous MTTI, reduce auction incidents by 90%, and proactively predict outages. We also introduce a highly anticipated capability that allows you to ingest, transform, and analyze data in real time using Splunk and Amazon Kinesis Firehose to gain valuable insights from your cloud resources. It’s now quicker and easier than ever to gain access to analytics-driven infrastructure monitoring using Splunk Enterprise & Splunk Cloud. Session sponsored by Splunk Breakout Session
ABD209 - Accelerating the Speed of Innovation with a Data Sciences Data & Analytics Hub at Takeda Historically, silos of data, analytics, and processes across functions, stages of development, and geography created a barrier to R&D efficiency. Gathering the right data necessary for decision-making was challenging due to issues of accessibility, trust, and timeliness. In this session, learn how Takeda is undergoing a transformation in R&D to increase the speed-to-market of high-impact therapies to improve patient lives. The Data and Analytics Hub was built, with Deloitte, to address these issues and support the efficient generation of data insights for functions such as clinical operations, clinical development, medical affairs, portfolio management, and R&D finance. In the AWS hosted data lake, this data is processed, integrated, and made available to business end users through data visualization interfaces, and to data scientists through direct connectivity. Learn how Takeda has achieved significant time reductions—from weeks to minutes—to gather and provision data that has the potential to reduce cycle times in drug development. The hub also enables more efficient operations and alignment to achieve product goals through cross functional team accountability and collaboration due to the ability to access the same cross domain data. Session sponsored by Deloitte Breakout Session
ABD210 - Modernizing Amtrak: Serverless Solution for Real-Time Data Capabilities As the nation's only high-speed intercity passenger rail provider, Amtrak needs to know critical information to run their business such as: Who’s onboard any train at any time? How are booking and revenue trending? Amtrak was faced with unpredictable and often slow response times from existing databases, ranging from seconds to hours; existing booking and revenue dashboards were spreadsheet-based and manual; multiple copies of data were stored in different repositories, lacking integration and consistency; and operations and maintenance (O&M) costs were relatively high. Join us as we demonstrate how Deloitte and Amtrak successfully went live with a cloud-native operational database and analytical datamart for near-real-time reporting in under six months. We highlight the specific challenges and the modernization of architecture on an AWS native Platform as a Service (PaaS) solution. The solution includes cloud-native components such as AWS Lambda for microservices, Amazon Kinesis and AWS Data Pipeline for moving data, Amazon S3 for storage, Amazon DynamoDB for a managed NoSQL database service, and Amazon Redshift for near-real time reports and dashboards. Deloitte’s solution enabled “at scale” processing of 1 million transactions/day and up to 2K transactions/minute. It provided flexibility and scalability, largely eliminate the need for system management, and dramatically reduce operating costs. Moreover, it laid the groundwork for decommissioning legacy systems, anticipated to save at least $1M over 3 years.   Session sponsored by Deloitte Breakout Session
ABD211 - Sysco Foods: A Journey from Too Much Data to Curated Insights In this session, we detail Sysco's journey from a company focused on hindsight-based reporting to one focused on insights and foresight. For this shift, Sysco moved from multiple data warehouses to an AWS ecosystem, including Amazon Redshift, Amazon EMR, AWS Data Pipeline, and more. As the team at Sysco worked with Tableau, they gained agile insight across their business. Learn how Sysco decided to use AWS, how they scaled, and how they became more strategic with the AWS ecosystem and Tableau. Session sponsored by Tableau Breakout Session
ABD212 - SAP HANA: The Foundation of SAP’s Digital Core Learn how customers are leveraging AWS to better position their enterprises for the digital transformation journey. In this session, you hear about: operations and process; the SAP transformation journey including architecting, migrating, running SAP on AWS; complete automation and management of the AWS layer using AWS native services; and a customer example. We also discuss the challenges of migration to the cloud and a managed services environment; the benefits to the customer of the new operating model; and lessons learned. By the end of the session, you understand why you should consider AWS for your next SAP platform, how to get there when you are ready and some best practices to manage your SAP systems on AWS. session sponsored by DXC Technology Breakout Session
ABD213 - How to Build a Data Lake with AWS Glue Data Catalog As data volumes grow and customers store more data on AWS, they often have valuable data that is not easily discoverable and available for analytics. The AWS Glue Data Catalog provides a central view of your data lake, making data readily available for analytics. We introduce key features of the AWS Glue Data Catalog and its use cases. Learn how crawlers can automatically discover your data, extract relevant metadata, and add it as table definitions to the AWS Glue Data Catalog. We will also explore the integration between AWS Glue Data Catalog and Amazon Athena, Amazon EMR, and Amazon Redshift Spectrum.  Breakout Session
ABD214 - Real-time User Insights for Mobile and Web Applications with Amazon Pinpoint With customers demanding relevant and real-time experiences across a range of devices, digital businesses are looking to gather user data at scale, understand this data, and respond to customer needs instantly. This requires tools that can record large volumes of user data in a structured fashion, and then instantly make this data available to generate insights. In this session, we demonstrate how you can use Amazon Pinpoint to capture user data in a structured yet flexible manner. Further, we demonstrate how this data can be set up for instant consumption using services like Amazon Kinesis Firehose and Amazon Redshift. We walk through example data based on real world scenarios, to illustrate how Amazon Pinpoint lets you easily organize millions of events, record them in real-time, and store them for further analysis. Breakout Session
ABD215 - Serverless Data Prep with AWS Glue In this session, you learn how to set up a crawler to automatically discover your data and build your AWS Glue Data Catalog. You then auto-generate an AWS Glue ETL script, download it, and interactively edit it using a Zeppelin notebook, connected to an AWS Glue development endpoint. After that, you upload this script to Amazon S3, reuse it across multiple jobs, and add trigger conditions to run the jobs. The resulting datasets automatically get registered in the AWS Glue Data Catalog and you can then query these new datasets from Amazon EMR and Amazon Athena. Prerequisites: Knowledge of Python and familiarity with big data applications is preferred but not required. Attendees must bring their own laptops. Workshop
ABD217 - From Batch to Streaming: How Amazon Flex Uses Real-time Analytics to Deliver Packages on Time Reducing the time to get actionable insights from data is important to all businesses, and customers who employ batch data analytics tools are exploring the benefits of streaming analytics. Learn best practices to extend your architecture from data warehouses and databases to real-time solutions. Learn how to use Amazon Kinesis to get real-time data insights and integrate them with Amazon Aurora, Amazon RDS, Amazon Redshift, and Amazon S3. The Amazon Flex team describes how they used streaming analytics in their Amazon Flex mobile app, used by Amazon delivery drivers to deliver millions of packages each month on time. They discuss the architecture that enabled the move from a batch processing system to a real-time system, overcoming the challenges of migrating existing batch data to streaming data, and how to benefit from real-time analytics. Breakout Session
ABD218 - How EuroLeague Basketball Uses IoT Analytics to Engage Fans IoT and big data have made their way out of industrial applications, general automation, and consumer goods, and are now a valuable tool for improving consumer engagement across a number of industries, including media, entertainment, and sports. The low cost and ease of implementation of AWS analytics services and AWS IoT have allowed AGT, a leader in IoT, to develop their IoTA analytics platform. Using IoTA, AGT brought a tailored solution to EuroLeague Basketball for real-time content production and fan engagement during the 2017-18 season. In this session, we take a deep dive into how this solution is architected for secure, scalable, and highly performant data collection from athletes, coaches, and fans. We also talk about how the data is transformed into insights and integrated into a content generation pipeline. Lastly, we demonstrate how this solution can be easily adapted for other industries and applications. Breakout Session
ABD219 - Automatically Catalog Your Data Lake Using AWS Glue Crawlers Companies are implementing data lakes on Amazon S3 to build unified data access platforms. Join our discussion to ask questions and learn more about cataloging your data lake. We cover how to set up an AWS Glue crawler to automatically scan your data lake and build your AWS Glue Data Catalog. We also discuss how crawlers run periodically to keep your table definitions up-to-date so they can be easily queried from Amazon Athena and Amazon Redshift Spectrum. Lastly, we talk about writing custom Grok classifiers to identify log files and categorize them in your catalog. Chalk Talk
ABD220 - Ten Tips for Getting the Most out of Amazon Athena Amazon Athena enables you to separate compute from storage, and implement scalable data lake architectures. Come join us for an interactive discussion on the most popular Amazon Athena use cases and get immediate business value from data such as AWS service logs. We also cover best practices to improve performance and reduce cost. Chalk Talk
ABD222 - How to Confidently Unleash Data to Meet the Needs of Your Entire Organization Where are you on the spectrum of IT leaders? Are you confident that you’re providing the technology and solutions that consistently meet or exceed the needs of your internal customers? Do your peers at the executive table see you as an innovative technology leader? Innovative IT leaders understand the value of getting data and analytics directly into the hands of decision makers, and into their own. In this session, Daren Thayne, Domo’s Chief Technology Officer, shares how innovative IT leaders are helping drive a culture change at their organizations. See how transformative it can be to have real-time access to all of the data that' is relevant to YOUR job (including a complete view of your entire AWS environment), as well as understand how it can help you lead the way in applying that same pattern throughout your entire company.   Session sponsored by Domo Breakout Session
ABD223 - IT Innovators: New Technology for Leveraging Data to Enable Agility, Innovation, and Business Optimization Companies of all sizes are looking for technology to efficiently leverage data and their existing IT investments to stay competitive and understand where to find new growth. Regardless of where companies are in their data-driven journey, they face greater demands for information by customers, prospects, partners, vendors and employees. All stakeholders inside and outside the organization want information on-demand or in “real time”, available anywhere on any device. They want to use it to optimize business outcomes without having to rely on complex software tools or human gatekeepers to relevant information. Learn how IT innovators at companies such as MasterCard, Jefferson Health, and TELUS are using Domo’s Business Cloud to help their organizations more effectively leverage data at scale. Session sponsored by Domo Breakout Session
ABD301 - Analyzing Streaming Data in Real Time with Amazon Kinesis Amazon Kinesis makes it easy to collect, process, and analyze real-time, streaming data so you can get timely insights and react quickly to new information. In this session, we present an end-to-end streaming data solution using Kinesis Streams for data ingestion, Kinesis Analytics for real-time processing, and Kinesis Firehose for persistence. We review in detail how to write SQL queries using streaming data and discuss best practices to optimize and monitor your Kinesis Analytics applications. Lastly, we discuss how to estimate the cost of the entire system. Breakout Session
ABD302 - Real-Time Data Exploration and Analytics with Amazon Elasticsearch Service and Kibana In this session, we use Apache web logs as example and show you how to build an end-to-end analytics solution. First, we cover how to configure an Amazon ES cluster and ingest data using Amazon Kinesis Firehose. We look at best practices for choosing instance types, storage options, shard counts, and index rotations based on the throughput of incoming data. Then we demonstrate how to set up a Kibana dashboard and build custom dashboard widgets. Finally, we review approaches for generating custom, ad-hoc reports.   Breakout Session
ABD303 - Developing an Insights Platform – Sysco’s Journey from Disparate Systems to Data Lake and Beyond Sysco has nearly 200 operating companies across its multiple lines of business throughout the United States, Canada, Central/South America, and Europe. As the global leader in food services, Sysco identified the need to streamline the collection, transformation, and presentation of data produced by the distributed units and systems, into a central data ecosystem. Sysco's Business Intelligence and Analytics team addressed these requirements by creating a data lake with scalable analytics and query engines leveraging AWS services. In this session, Sysco will outline their journey from a hindsight reporting focused company to an insights driven organization. They will cover solution architecture, challenges, and lessons learned from deploying a self-service insights platform. They will also walk through the design patterns they used and how they designed the solution to provide predictive analytics using Amazon Redshift Spectrum, Amazon S3, Amazon EMR, AWS Glue, Amazon Elasticsearch Service and other AWS services. Breakout Session
ABD304 - Best Practices for Data Warehousing with Amazon Redshift & Redshift Spectrum Most companies are over-run with data, yet they lack critical insights to make timely and accurate business decisions. They are missing the opportunity to combine large amounts of new, unstructured big data that resides outside their data warehouse with trusted, structured data inside their data warehouse. In this session, we take an in-depth look at how modern data warehousing blends and analyzes all your data, inside and outside your data warehouse without moving the data, to give you deeper insights to run your business. We will cover best practices on how to design optimal schemas, load data efficiently, and optimize your queries to deliver high throughput and performance.   Breakout Session
ABD305 - Design Patterns and Best Practices for Data Analytics with Amazon EMR Amazon EMR is one of the largest Hadoop operators in the world, enabling customers to run ETL, machine learning, real-time processing, data science, and low-latency SQL at petabyte scale. In this session, we introduce you to Amazon EMR design patterns such as using Amazon S3 instead of HDFS, taking advantage of both long and short-lived clusters, and other Amazon EMR architectural best practices. We talk about lowering cost with Auto Scaling and Spot Instances, and security best practices for encryption and fine-grained access control. Finally, we dive into some of our recent launches to keep you current on our latest features. Breakout Session
ABD307 - Deep Analytics for Global AWS Marketing Organization To meet the needs of the global marketing organization, the AWS marketing analytics team built a scalable platform that allows the data science team to deliver custom econometric and machine learning models for end user self-service. To meet data security standards, we use end-to-end data encryption and different AWS services such as Amazon Redshift, Amazon RDS, Amazon S3, Amazon EMR with Apache Spark and Auto Scaling. In this session, you see real examples of how we have scaled and automated critical analysis, such as calculating the impact of marketing programs like re:Invent and prioritizing leads for our sales teams. Breakout Session
ABD309 - How Twilio Scaled Its Data-Driven Culture As a leading cloud communications platform, Twilio has always been strongly data-driven. But as headcount and data volumes grew—and grew quickly—they faced many new challenges. One-off, static reports work when you’re a small startup, but how do you support a growth stage company to a successful IPO and beyond? Today, Twilio's data team relies on AWS and Looker to provide data access to 700 colleagues. Departments have the data they need to make decisions, and cloud-based scale means they get answers fast. Data delivers real-business value at Twilio, providing a 360-degree view of their customer, product, and business. In this session, you hear firsthand stories directly from the Twilio data team and learn real-world tips for fostering a truly data-driven culture at scale. Session sponsored by Looker Breakout Session
ABD310 - How FINRA Secures Its Big Data and Data Science Platform on AWS FINRA uses big data and data science technologies to detect fraud, market manipulation, and insider trading across US capital markets. As a financial regulator, FINRA analyzes highly sensitive data, so information security is critical. Learn how FINRA secures its Amazon S3 Data Lake and its data science platform on Amazon EMR and Amazon Redshift, while empowering data scientists with tools they need to be effective. In addition, FINRA shares AWS security best practices, covering topics such as AMI updates, micro segmentation, encryption, key management, logging, identity and access management, and compliance. Breakout Session
ABD311 - Deploying Business Analytics at Enterprise Scale with Amazon QuickSight One of the biggest tradeoffs customers usually make when deploying BI solutions at scale is agility versus governance. Large-scale BI implementations with the right governance structure can take months to design and deploy. In this session, learn how you can avoid making this tradeoff using Amazon QuickSight. Learn how to easily deploy Amazon QuickSight to thousands of users using Active Directory and Federated SSO, while securely accessing your data sources in Amazon VPCs or on-premises. We also cover how to control access to your datasets, implement row-level security, create scheduled email reports, and audit access to your data. Breakout Session
ABD312 - Deep Dive: Migrating Big Data Workloads to AWS Customers are migrating their analytics, data processing (ETL), and data science workloads running on Apache Hadoop, Spark, and data warehouse appliances from on-premise deployments to AWS in order to save costs, increase availability, and improve performance. AWS offers a broad set of analytics services, including solutions for batch processing, stream processing, machine learning, data workflow orchestration, and data warehousing. This session will focus on identifying the components and workflows in your current environment; and providing the best practices to migrate these workloads to the right AWS data analytics product. We will cover services such as Amazon EMR, Amazon Athena, Amazon Redshift, Amazon Kinesis, and more. We will also feature Vanguard, an American investment management company based in Malvern, Pennsylvania with over $4.4 trillion in assets under management. Ritesh Shah, Sr. Program Manager for Cloud Analytics Program at Vanguard, will describe how they orchestrated their migration to AWS analytics services, including Hadoop and Spark workloads to Amazon EMR. Ritesh will highlight the technical challenges they faced and overcame along the way, as well as share common recommendations and tuning tips to accelerate the time to production. Breakout Session
ABD313 - Building an End-to-End Serverless Data Analytics Solution on AWS As business analyst, data engineer, or data scientist, you want to quickly start querying your dataset without having to spin up clusters or manage the underlying infrastructure. Join us in this hands-on workshop to build a serverless data analytics solution on AWS using Amazon Athena and Amazon QuickSight. This design allows you to instantly analyze and visualize large-scale datasets directly from Amazon S3 using standard SQL. An optional lab is included to incorporate serverless ETL using AWS Glue to optimize query performance. We also give you access to a take-home lab for you to reapply the same design and directly query the same dataset in Amazon S3 from an Amazon Redshift data warehouse using Redshift Spectrum. The session opens with an overview of the services, best practice, objectives, and guidance on where to find resources. Prerequisites: Participants should have an AWS account established and available for use during the workshop. Attendees should bring their own laptops and should have a basic familiarity with SQL. Workshop
ABD314 - Searching Your Data in Amazon RDS and Amazon DynamoDB You choose different databases, such as Amazon RDS or Amazon DynamoDB, based on your use case and requirements such as scale, performance, transactional operations, etc. You may run into situations where all you want is to simply run a text-search across all your data. Did you know that you can set up mechanisms to connect your Amazon RDS and Amazon DynamoDB databases with Amazon Elasticsearch Service and run text searches across your data? Join us for a discussion on architectures you can use to accomplish this by leveraging the various AWS services. Chalk Talk
ABD315 - Building Serverless ETL Pipelines with AWS Glue Organizations need to gain insight and knowledge from a growing number of Internet of Things (IoT), APIs, clickstreams, unstructured and log data sources. However, organizations are also often limited by legacy data warehouses and ETL processes that were designed for transactional data. In this session, we introduce key ETL features of AWS Glue, cover common use cases ranging from scheduled nightly data warehouse loads to near real-time, event-driven ETL flows for your data lake. We discuss how to build scalable, efficient, and serverless ETL pipelines using AWS Glue. Additionally, Merck will share how they built an end-to-end ETL pipeline for their application release management system, and launched it in production in less than a week using AWS Glue. Breakout Session
ABD316 - American Heart Association: Finding Cures to Heart Disease Through the Power of Technology Combining disparate datasets and making them accessible to data scientists and researchers is a prevalent challenge for many organizations, not just in healthcare research. American Heart Association (AHA) has built a data science platform using Amazon EMR, Amazon Elasticsearch Service, and other AWS services, that corrals multiple datasets and enables advanced research on phenotype and genotype datasets, aimed at curing heart diseases. In this session, we present how AHA built this platform and the key challenges they addressed with the solution. We also provide a demo of the platform, and leave you with suggestions and next steps so you can build similar solutions for your use cases. Breakout Session
ABD317 - Building Your First Big Data Application on AWS Want to ramp up your knowledge of AWS big data web services and launch your first big data application on the cloud? We walk you through simplifying big data processing as a data bus comprising ingest, store, process, and visualize. You build a big data application using AWS managed services, including Amazon Athena, Amazon Kinesis, Amazon DynamoDB, and Amazon S3. Along the way, we review architecture design patterns for big data applications and give you access to a take-home lab so that you can rebuild and customize the application yourself. You should bring your own laptop and have some familiarity with AWS services to get the most from this session. Workshop
ABD318 - Architecting a data lake with Amazon S3, Amazon Kinesis, and Amazon Athena Learn how to architect a data lake where different teams within your organization can publish and consume data in a self-service manner. As organizations aim to become more data-driven, data engineering teams have to build architectures that can cater to the needs of diverse users - from developers, to business analysts, to data scientists. Each of these user groups employs different tools, have different data needs and access data in different ways. In this talk, we will dive deep into assembling a data lake using Amazon S3, Amazon Kinesis, Amazon Athena, Amazon EMR, and AWS Glue. The session will feature Mohit Rao, Architect and Integration lead at Atlassian, the maker of products such as JIRA, Confluence, and Stride. First, we will look at a couple of common architectures for building a data lake. Then we will show how Atlassian built a self-service data lake, where any team within the company can publish a dataset to be consumed by a broad set of users. Breakout Session
ABD319 - Tooling Up for Efficiency: DIY Solutions @ Netflix At Netflix, we have traditionally approached cloud efficiency from a human standpoint, whether it be in-person meetings with the largest service teams or manually flipping reservations. Over time, we realized that these manual processes are not scalable as the business continues to grow. Therefore, in the past year, we have focused on building out tools that allow us to make more insightful, data-driven decisions around capacity and efficiency. In this session, we discuss the DIY applications, dashboards, and processes we built to help with capacity and efficiency. We start at the ten thousand foot view to understand the unique business and cloud problems that drove us to create these products, and discuss implementation details, including the challenges encountered along the way. Tools discussed include Picsou, the successor to our AWS billing file cost analyzer; Libra, an easy-to-use reservation conversion application; and cost and efficiency dashboards that relay useful financial context to 50+ engineering teams and managers. Breakout Session
ABD320 - Netflix Keystone SPaaS: Real-time Stream Processing as a Service Over 100 million subscribers from over 190 countries enjoy the Netflix service. This leads to over a trillion events, amounting to 3 PB, flowing through the Keystone infrastructure to help improve customer experience and glean business insights. The self-serve Keystone stream processing service processes these messages in near real-time with at-least once semantics in the cloud. This enables the users to focus on extracting insights, and not worry about building out scalable infrastructure. In this session, I share the benefits and our experience building the platform. Breakout Session
ABD321 - Don’t Wait Until Tomorrow: How to Use Streaming Data to Gain Real-time Insights into Your Business In recent years, there has been an explosive growth in the number of connected devices and real-time data sources. Because of this, data is being produced continuously and its production rate is accelerating. Businesses can no longer wait for hours or days to use this data. To gain the most valuable insights, they must use this data immediately so they can react quickly to new information. In this workshop, you learn how to take advantage of streaming data sources to analyze and react in near real-time. You are presented with several requirements for a real-world streaming data scenario and you're tasked with creating a solution that successfully satisfies the requirements using services such as Amazon Kinesis, AWS Lambda and Amazon SNS. Workshop
ABD321-R - [REPEAT] Don’t Wait Until Tomorrow: How to Use Streaming Data to Gain Real-time Insights into Your Business In recent years, there has been an explosive growth in the number of connected devices and real-time data sources. Because of this, data is being produced continuously and its production rate is accelerating. Businesses can no longer wait for hours or days to use this data. To gain the most valuable insights, they must use this data immediately so they can react quickly to new information. In this workshop, you learn how to take advantage of streaming data sources to analyze and react in near real-time. You are presented with several requirements for a real-world streaming data scenario and you're tasked with creating a solution that successfully satisfies the requirements using services such as Amazon Kinesis, AWS Lambda and Amazon SNS. Workshop
ABD322 - Implementing a Flight Simulator Interface Using AI, Virtual Reality, and Big Data on AWS This workshop explores the technology options, architectures, and implementations associated with instrumenting AR, VR, and simulated worlds. Using flight simulation as the primary use case, you learn to consume, process, store, and analyze high velocity telemetry as well as exploring control plane implementations using AWS IoT, AWS Lambda, Amazon Kinesis, and Amazon SNS. This is a hands-on workshop and you need a laptop (tablets are not suitable). You should have a solid understanding of AWS products and Node.js. Workshop
ABD323 - Extending Analytics Beyond the Data Warehouse Companies have valuable data that they may not be analyzing due to the complexity, scalability, and performance issues of loading the data into their data warehouse. However, with the right tools, you can extend your analytics to query data in your data lake—with no loading required. Amazon Redshift Spectrum extends the analytic power of Amazon Redshift beyond data stored in your data warehouse to run SQL queries directly against vast amounts of unstructured data in your Amazon S3 data lake. This gives you the freedom to store your data where you want, in the format you want, and have it available for analytics when you need it. Join a discussion with AWS solution architects to ask questions and learn more about how you can extend your analytics beyond your data warehouse. Chalk Talk
ABD324 - Migrating Your Oracle Data Warehouse to Amazon Redshift Using AWS DMS and AWS SCT Customers that have Oracle Data warehouses find them complex and expensive to manage. Most are struggling with data load and performance issues. They are looking to migrate to something which is easy to manage, cost effective, and improves their query performance. Amazon Redshift is a fast, fully managed, petabyte-scale data warehouse service that makes it simple and cost-effective to analyze all your data using your existing business intelligence tools. Migrating your Oracle data warehouse to Amazon Redshift can substantially improve query and data load performance, increase scalability, and save costs. This workshop leverages AWS Database Migration Service and AWS Schema Conversion Tool to migrate an existing Oracle data warehouse to Amazon Redshift. When migrating your database from one engine to another, you have two major things to consider: the conversion of the schema and code objects, and the migration and conversion of the data itself. You can convert schema and code with AWS SCT and migrate data with AWS DMS. AWS DMS helps you migrate your data easily and securely with minimal downtime. Workshop
ABD324-R - [REPEAT] Migrating Your Oracle Data Warehouse to Amazon Redshift Using AWS DMS and AWS SCT Customers that have Oracle Data warehouses find them complex and expensive to manage. Most are struggling with data load and performance issues. They are looking to migrate to something which is easy to manage, cost effective, and improves their query performance. Amazon Redshift is a fast, fully managed, petabyte-scale data warehouse service that makes it simple and cost-effective to analyze all your data using your existing business intelligence tools. Migrating your Oracle data warehouse to Amazon Redshift can substantially improve query and data load performance, increase scalability, and save costs. This workshop leverages AWS Database Migration Service and AWS Schema Conversion Tool to migrate an existing Oracle data warehouse to Amazon Redshift. When migrating your database from one engine to another, you have two major things to consider: the conversion of the schema and code objects, and the migration and conversion of the data itself. You can convert schema and code with AWS SCT and migrate data with AWS DMS. AWS DMS helps you migrate your data easily and securely with minimal downtime. Workshop
ABD325 - Deliver Voice-Automated Serverless BI Solutions in Under 3 Hours Use AWS tools to discover meaningful Key Performance Indicators (KPIs) for your organization. Data that was sitting in raw form such as JSON can be published to S3 and queried using Athena, the AWS clusterless query engine. To visually discover your data, AWS Quicksight, will enable your organization to create KPIs such as: “How many unique user visits in the last quarter?” or “How many tweets has our company had from AsiaPac in the last day?”. In this workshop we’ll use these Big Data technologies along with AWS serverless tools to deliver metrics through voice.   To do this, we’ll walk through the process of enabling and testing these metrics for a custom skill on Alexa-enabled devices (No echo device needed for workshop). This will give you the skills to develop creative voice-powered analytics to your organization’s stakeholders.      Workshop
ABD326 - Easy and Scalable Log Analytics with Amazon Elastisearch Service Applications generate logs. Infrastructure generates logs. Even humans generate logs (though we usually call that “medical data”). By ingesting and analyzing logs, you can gain understanding of how complex systems operate and quickly discover and diagnose when they don’t work as they should. In this workshop, we ingest and analyze log streams using Amazon Kinesis Firehose and Amazon Elasticsearch Service. You should come with an understanding of AWS fundamentals (Amazon EC2, Amazon S3, and security groups). You need a laptop with a Chrome or Firefox browser. Workshop
ABD327 - Migrating Your Traditional Data Warehouse to a Modern Data Lake In this session, we discuss the latest features of Amazon Redshift and Redshift Spectrum, and take a deep dive into its architecture and inner workings. We share many of the recent availability, performance, and management enhancements and how they improve your end user experience. You also hear from 21st Century Fox, who presents a case study of their fast migration from an on-premises data warehouse to Amazon Redshift. Learn how they are expanding their data warehouse to a data lake that encompasses multiple data sources and data formats. This architecture helps them tie together siloed business units and get actionable 360-degree insights across their consumer base. Breakout Session
ABD329 - A Look Under the Hood – How Amazon.com Uses AWS Services for Analytics at Massive Scale Amazon’s consumer business continues to grow, and so does the volume of data and the number and complexity of the analytics done in support of the business. In this session, we talk about how Amazon.com uses AWS technologies to build a scalable environment for data and analytics. We look at how Amazon is evolving the world of data warehousing with a combination of a data lake and parallel, scalable compute engines such as Amazon EMR and Amazon Redshift. Breakout Session
Get More Results